
  
Abstract—This paper emphasizes studying on the properties of 

approximations in rough set and multi-granulation rough set models 
based on maximal compatible classes as primitive ones in which any 
two objects are mutually compatible, obtains several theorem results, 
proposes and designs the upper and lower approximation computation 
algorithms in multi-granulation rough set model. It verifies the 
correctness of algorithms by examples and experiments. 
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I. INTRODUCTION 
ough set theory (RST for short), put forward Z. Pawlak in 
1982 [1], is an efficient mathematics tool for complete 
information system processing and for intelligent system 

processing characterized by uncertainty, vague, uncertainty 
[2]-[3]. It is now widely applied in many research fields such as 
decision making, pattern recognition, knowledge discovery, and 
so on. Incomplete information systems (IIS for short), usually 
studied by constructing non-indiscernibility relation, instead of 
indiscernibility relation, such as tolerance relation suggested in 
[4], similarity relation put forward in [5], limited tolerant 
relation proposed in [6], and so on  (see [7]-[8]) to deal with due 
to the existence of null or missing attribute values. In this way, 
the rough set model is extended and gotten more and more wide 
and better investigated. These days, researchers further suggest 
multi-granulation rough set models from the view point of 
granules and different perspectives. Combining rough set model 
with granule and multi-granulation to study has been become a 
hot topic in related academic regions. 

Concerning granule view with maximal compatible classes as 
primitive granules based on tolerance relation to promote the 
model to handle IIS([9]), the present paper proceeds with some 
new work about the definitions of optimistic and pessimistic 
lower and upper approximations in single attribute subset 
through this new granule view. It introduces the related 
computation methods of finding approximation into 
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multi-granulation rough set model (MGRSM) in both optimistic 
and pessimistic cases. It also discusses the properties of them 
and the relationships between single and multiple granulation 
models and between the optimistic and pessimistic cases. The 
main task of it is to analyse and design algorithms for solving 
lower and upper approximations in multi-granulation rough set 
model[10]-[11]. It brings even a new expect to produce a new 
approach for transacting multi-granulation RST problems in IIS 
and people may us them to acquire determinative and possible 
decision rules or knowledge from massive information system 
conveniently and efficiently in the future. Through proofs, 
examples and experiments, it verifies that the knowledge 
acquisition approach is validated. So the work done here is of 
great importance.  

II. DEFINITIONS 

An IIS is a quadruple ( , , , )S U AT V f= According to the 
definitions in [4]. 

 ( ) {( , ) : , ( ) ( )a aTOL A x y U U a A f x f y= ∈ × ∀ ∈ =  

( ) * ( ) *}a af x f y∨ = ∨ =                         (1) 

is called the tolerance relation derived by A AT⊆ .  
Definition 1.  Let .A AT⊆  ( )C A  is defined as  

2( ) { : max{ ( )}}C A X U X TOL A= ⊆ ⊆               (2) 
where max means that the operation is operator ⊆  on a series 
of sets. ( )C A also forms a cover or a knowledge expression 

system on U . 
Definition 2. Let x U∈ , .A AT⊆  The compatible 

class(es) containing x  is defined as 
2( ) max{ : , ( )}AC x X x X X TOL A= ∈ ⊆ ,            (3) 

where max also means ⊆ . Because the compatible class(es) 

containing x may be not unique for some x U∈ , ( )AC x may 
be a set of compatible classes . 

It can be easily proved that  
 ( ) ( )x U AC A C x∈= ∪ .                                              (4) 

Definition 3.  The upper and lower approximations for 
X U⊆ in ( )C A  are defined respectively as follows:  

( ) { : ( )( )}oA X x U C C A x C C X= ∈ ∃ ∈ ∈ ∧ ⊆ ;                 (5) 

( ) { : ( )( ( ))}
o

A X x U C C A x C C X= ∈ ∃ ∈ ∈ ∧ ∩ ≠ ∅ .            (6) 
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The optimistic approximation precision for X U⊆ in 
( )C A  is  

| ( ) | / | ( ) |
ooA X A X .                                                (7) 

Definition 4.  The pessimist upper and lower 
approximations for X U⊆ in ( )C A  are defined respectively 
as follows: 

( ) { : ( )( ( ))}pA X x U C C A x C C X= ∈ ∀ ∈ ∈ → ⊆ ;             (8) 

( )
p

A X = { : ( )( ( ))}x U C C A x C C X∈ ∀ ∈ ∈ → ∩ ≠ ∅ .           (9) 

The pessimistic approximation precision for X U⊆ in 
( )C A  is  

| ( ) | / | ( ) |
ppA X A X .                                              (10) 

In the literature[10]-[11], Qian et al. proposed a 
multi-granulation rough set model, which includes optimistic 
multi-granulation rough set and pessimistic multi-granulation 
rough set[12]. Combined with our above compatible granules, 
we can introduce them into multi-granulation rough set using 
knowledge expression system ( )C A , we can also obtain related 
new research results. 

Definition 5. Let 1 2, ,..., mA A A AT⊆  be m  attribute 

subsets. for , {1,2,..., }X U M m∀ ⊆ = , the optimistic 

multi-granulation lower and upper approximations of X with 
respect to 1 2, ,..., mA A A are respectively defined as:  

1
( ) { : ( ( )(

om
i ii

A X x U i M C C A x C
=

= ∈ ∃ ∈ ∃ ∈ ∈∑    

                                      ( )))};C X∧ ⊆                            (11) 

1
( ) { : ( ( )(

om
i ii

A X x U i M C C A x C
=

= ∈ ∃ ∈ ∃ ∈ ∈∑
 

                               

 ( )))}.C X∧ ∩ ≠ ∅                       (12) 

The optimistic multi-granulation boundary region of X  is  

1
1 1

( ) ( ) ( ).
m Aii

om mo o
i ii i

Bn X A X A X
∑ =

= =
= −∑ ∑               (13)  

The optimistic approximation precision for X U⊆ in 
multi-granulation model with respect to ( )C A  is 

 
1 1

| ( ) | / | ( ) |
oom m

i ii i
A X A X

= =∑ ∑ .                           (14) 

Definition 6. The pessimistic multi-granulation lower and 
upper approximations are respectively defined as: 

1
( ) { : ( ( )

pm
i ii

A X x U i M C C A
=

= ∈ ∀ ∈ ∀ ∈∑
 

                            

 ( ))};x C C X∈ → ⊆                      (15) 

 
1

( ) { : ( ( )
pm

i ii
A X x U i M C C A

=
= ∈ ∀ ∈ ∀ ∈∑  

                          ( ))}.x C C X∈ → ∩ ≠ ∅                 (16)  

The pessimistic multi-granulation boundary region of X  is  

1
1 1

( ) ( ) ( ).
m Aii

pm mp p
i ii i

Bn X A X A X
∑ =

= =
= −∑ ∑             (17) 

The pessimistic approximation precision for X U⊆ in 
multi-granulation model with respect to ( )C A  is  

1 1
| ( ) | / | ( ) |

ppm m
i ii i

A X A X
= =∑ ∑ .                         (18) 

III. PROPERTIES AND RELATIONSHIPS 

Theorem 1.  (i) ( ),( )o
C C A C XA X C∈ ⊆= ∪ ;                          (19) 

(ii) ( ),( )
o

C C A C XA X C∈ ∩ ≠∅= ∪ .                  (20) 

Proof.       (i) y∈ ( ) { : ( )oA X x U C C A= ∈ ∃ ∈  

( )}x C C X∈ ∧ ⊆ ⇒ ( )( )C C A y C C X∃ ∈ ∈ ∧ ⊆  

⇒y∈ ( ),C C A C X C∈ ⊆∪ ,  so ( ),( )o
C C A C XA X C∈ ⊆⊆ ∪ .  

Conversely, For any y∈ ( ),C C A C X C∈ ⊆∪  

 ⇒ ( )( ) C C A C X∃ ∈ ⊆  such that y C∈ .  
So  

y ∈{ : ( )( )} ( )ox U C C A x C C X A X∈ ∃ ∈ ∈ ∧ ⊆ = . 

That is ( ), ( )o
C C A C X C A X∈ ⊆∪ ⊆ .  

Thus ( ),( )o
C C A C XA X C∈ ⊆= ∪ . 

The result of this theorem implies that the definition of 
( )oA X  can be equivalently defined by ( ),C C A C X C∈ ⊆∪ . 

(ii) y∈ ( ) { : ( )( )}
o

A X x U C C A x C C X= ∈ ∃ ∈ ∈ ∧ ∩ ≠ ∅  
⇒ ( )( )C C A y C C X∃ ∈ ∈ ∧ ∩ ≠ ∅   

⇒y∈ ( ),C C A C X C∈ ∩ ≠∅∪ .  

So ( ),( )
o

C C A C XA X C∈ ∩ ≠∅⊆ ∪ .  

Conversely, y∈ ( ),C C A C X C∈ ∩ ≠∅∪  

⇒ ( )( ) C C A C X∃ ∈ ∩ ≠ ∅   
such that y C∈ .  

So y ∈ { : ( )( )}x U C C A x C C X∈ ∃ ∈ ∈ ∧ ∩ ≠ ∅  

( )oA X= . That is ( ), ( )
o

C C A C X C A X∈ ∩ ≠∅∪ ⊆ . Thus, 

( ),( )
o

C C A C XA X C∈ ∩ ≠∅= ∪ . 

The result of this theorem implies that the definition of 

( )
o

A X  can be equivalently defined by ( ),C C A C X C∈ ∩ ≠∅∪ . 

Theorem 2.  We have 

(i) ~ (~ ) ( )
poA X A X= ;                                            (21) 

(ii) ~ (~ ) ( )
ooA X A X⊆ .                                        (22) 

Proof.  (i) y∈ ~ (~ )oA X ⇔ y∉ (~ )oA X  
 ⇔ y∉{ : ( )( ~ )}x U C C A x C C X∈ ∃ ∈ ∈ ∧ ⊆ . 

( )( ~ )C C A y C C X¬∃ ∈ ∈ ∧ ⊆  
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⇔ ( )( ( ) ~ )C C A y C C X∀ ∈ ¬ ∈ ∨ ⊄  

⇔ ( )( ( ) ( ))C C A y C C X∀ ∈ ¬ ∈ ∨ ∩ ≠ ∅  

⇔ ( )( )C C A y C C X∀ ∈ ∈ → ∩ ≠ ∅ . So ~ (~ )oA X  
 { : ( )( )}x U C C A x C C X= ∈ ∀ ∈ ∈ → ∩ ≠ ∅  

= ( )
p

A X .  

(ii) y∈ ~ (~ )oA X ⇔ y∉ ( ), ~C C A C X C∈ ⊆∪  

⇔ ( ), ~ ,C C A C X y C∀ ∈ ⊆ ∉  

⇒ y∈ ( ),C C A C X C∈ ∩ ≠∅∪ = ( )
o

A X .  

So, ~ (~ ) ( )
ooA X A X⊆ .    

Form (ii) of Theorem 3, we can immediately obtain that  

~ (~ ) ( )
o oA X A X⊆ . 

Theorem 3.   ~ (~ ) ( )
ppA X A X⊆ .                            (23) 

Proof.  y∈ ~ (~ )pA X ⇔ y∉ (~ )pA X  
 ⇔ y∉{ : ( )( ( ~ ))}x U C C A x C C X∈ ∀ ∈ ∈ → ⊆ . 
Because  ( )( ( ~ ))C C A y C C X¬∀ ∈ ∈ → ⊆  
⇔ ( ) ( ( ) ~ ))C C A y C C X∃ ∈ ¬ ¬ ∈ ∨ ⊆  
⇔ ( ) ( ( ) ))C C A y C C X∃ ∈ ¬ ¬ ∈ ∨ ∩ = ∅  
⇔ ( )( )C C A y C C X∀ ∈ ∈ ∧ ∩ ≠ ∅   
⇒ ( )( )C C A y C C X∀ ∈ ∈ → ∩ ≠ ∅ , we have  

~ (~ ) ( )
ppA X A X⊆ .     

Theorem 4.  ~ (~ )
p

A X  = ( )oA X .                            (24) 

Proof. y∈ ~ (~ )
p

A X ⇔ y∉ (~ )
p

A X  
⇔y∉{ : ( )( ( ~ ))}x U C C A x C C X∈ ∀ ∈ ∈ → ∩ ≠ ∅ . 
Because ( )( ( ~ ))C C A x C C X¬∀ ∈ ∈ → ∩ ≠ ∅  
⇔ ( )( ( ) ( ~ ))C C A x C C X¬∀ ∈ ¬ ∈ ∨ ∩ ≠ ∅  
⇔ ( )(( ) ( ~ ))C C A x C C X∃ ∈ ∈ ∧ ∩ = ∅  
⇔ ( )(( ) ( ))C C A x C C X∃ ∈ ∈ ∧ ⊆ .  

So ~ (~ )
p

A X = ( )oA X . 
The proof of this theorem can also be obtained immediately 

from the (i) of Theorem 3. 
Theorem 5. We have 

 (i) 11
( ) ( )

om om
i i ii

A X A X==
= ∪∑ ;                                   (25) 

(ii) 11
( ) ( )

o om m
i i ii

A X A X==
= ∪∑ .                                  (26) 

Proof. (i) y∈
1

( ) { :
om

ii
A X x U i M

=
= ∈ ∃ ∈∑   

( ( )iC C A∃ ∈ ( ( )))}x C C X∈ ∧ ⊆  

 ⇒ ( ( )( ( )))ii M C C A y C C X∃ ∈ ∃ ∈ ∈ ∧ ⊆  

⇒y∈ ( )o
iA X ⇒y∈ ( )o

iA X∪ .   

Conversely, for any y∈ 1 ( )om
i iA X=∪   

⇒ i M∃ ∈ , y∈ ( )o
iA X   

⇒ ( )( ( ))iC C A y C C X∃ ∈ ∈ ∧ ⊆  

⇒ y∈
1

( )
om

ii
A X

=∑ .   

Therefore, 11
( ) ( )

om om
i i ii

A X A X==
= ∪∑ . 

(ii)  y∈
1

( )
o

m
ii

A X
=

=∑  

{ : ( ( )( ( )))}ix U i M C C A x C C X∈ ∃ ∈ ∃ ∈ ∈ ∧ ∩ ≠ ∅  

⇒ ( ( )( ( )))ii M C C A y C C X∃ ∈ ∃ ∈ ∈ ∧ ∩ ≠ ∅  

⇒ y∈ ( )
o

iA X ⇒ y∈ 1 ( )
om

i iA X=∪ .  

Conversely, For any y∈ 1 ( )
om

i iA X=∪  

⇒ (i M∃ ∈ y∈ ( ))
o

iA X  

⇔ (i M∃ ∈ ( )( ( ))iC C A x C C X∃ ∈ ∈ ∧ ∩ ≠ ∅ ) 

⇒ y∈
1

( )
o

m
ii

A X
=∑ .  

Therefore, 11
( ) ( )

o om m
i i ii

A X A X==
= ∪∑ . 

Theorem 6. We obtain 

(i)  
1

~ (~ )
om

ii
A X

=∑ =
1

( )
p

m
ii

A X
=∑ ;                        (27) 

(ii)  
1 1

~ (~ ) ( )
opm m

i ii i
A X A X

= =
=∑ ∑                           (28) 

Proof.  (1)  y∈
1

~ (~ )
om

ii
A X

=∑  

{ : ( ( )( ( ~ )))}iy x U i M C C A x C C X⇔ ∉ ∈ ∃ ∈ ∃ ∈ ∈ ∧ ⊆  

{ : ( ( )(iy x U i M C C A x C⇔ ∉ ∈ ∃ ∈ ∃ ∈ ∈   

( )))}C X∧ ∩ = ∅ .  
Because  

( ( )( ( )))ii M C C A y C C X¬∃ ∈ ∃ ∈ ∈ ∧ ∩ = ∅  

⇔ ( ( )( ))ii M C C A y C C X∀ ∈ ∀ ∈ ∈ → ∩ ≠ ∅ , 

Therefore.
1

~ (~ ) { :
om

ii
A X x U i M

=
= ∈ ∀ ∈∑   

( ( )( ))}iC C A x C C X∀ ∈ ∈ → ∩ ≠ ∅ =
1

( )
p

m
ii

A X
=∑ . 

(ii) y∈
1

~ (~ )
pm

ii
A X

=∑ ⇔  

y ∉{ :x U i M∈ ∀ ∈ ( ( )( ~ ))}iC C A x C C X∀ ∈ ∈ → ⊆ .  

Because ( ( )( ~ ))ii M C C A x C C X¬∀ ∈ ∀ ∈ ∈ → ⊆  

⇔ ( ( )( ( ( ) ( ~ ))))ii M C C A x C C X∃ ∈ ∃ ∈ ¬ ¬ ∈ ∨ ⊆  

⇔ ( ( )(( ) ( ~ )))ii M C C A x C C X∃ ∈ ∃ ∈ ∈ ∧ ⊄  
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⇔ ( ( )( ))ii M C C A x C C X∃ ∈ ∃ ∈ ∈ ∧ ∩ ≠ ∅ . 
Therefore,  

1
~ (~ ) { : ( ( )

pm
i ii

A X x U i M C C A
=

= ∈ ∃ ∈ ∃ ∈∑  

1
( ))} ( )

o
m

ii
x C C X A X

=
∈ ∧ ∩ ≠ ∅ = ∑ . 

Lemma.  Under the same condition in the above theorem, 
we have 

 (i)  
1

( )
p

m
ii

A X
=∑ =

1
~ (~ )

om
ii

A X
=∑ ;                      (29) 

(ii)  
1 1

( ) ~ (~ )
opm m

i ii i
A X A X

= =
=∑ ∑ .                        (30) 

The two equations in this lemma can be easily proved 
through Theorem 7. 

Theorem 7.  Let ( , , , )S U AT V f=  be an incomplete 

information system and iA AT⊆ ( 1,2,..., )i m=  be m  
attribute subsets. Then for any X U⊆  , we have 

(i) 11
( ) ( )

pm pm
i i ii

A X A X==
= ∩∑ ;                                  (31) 

(ii) 11
( ) ( )

pm p m
i i ii

A X A X==
= ∩∑ .                                  (32) 

Proof. (i) Because
1

( ) { :
pm

ii
A X x U i M

=
= ∈ ∀ ∈∑  

( ( )( ))}iC C A x C C X∀ ∈ ∈ → ⊆  

⇔{ : ( )( )( 1,2,..., )}ix U C C A x C C X i m∈ ∀ ∈ ∈ → ⊆ =  

⇔ 1{ : ( )( )}m
i ix U C C A x C C X=∩ ∈ ∀ ∈ ∈ → ⊆  

1 ( )pm
i iA X=⇔ ∩ .  

Therefore, this theorem is held. 
(ii) The proof of it is similar to (i). 

Theorem 8.  Let S=(U,AT,V,f) be an incomplete information 
system and Ai ⊆AT(i=1,2,…,m) be m attribute subsets. Then for 
any X⊆U , we have 

    (i)  
1 1

( ) ( );
om m o

i ii i
A X X A X

= =
⊆ ⊆∑ ∑                       (33)  

    (ii)  
1 1

( ) ( ) ,
om m o

i ii i
A A

= =
∅ = ∅ = ∅∑ ∑                        (34) 

1 1
( ) ( ) ;

om m o
i ii i

A U A U U
= =

= =∑ ∑                            (35) 

(iii) 
1 1 1

( ( )) ( ),m m mo o o
i i ii i i

A A X A X
= = =

=∑ ∑ ∑              (36) 

1 1 1
 ( ( ))  ( );m m mo o o

i i ii i i
A A X A X

= = =
=∑ ∑ ∑             (37) 

(iv) 
1 1

(~ ) ~ ( ),   m mo p
i ii i

A X A X
= =

=∑ ∑                      (38) 

           
1 1

(~ ) ~ ( )m mo p
i ii i

A X A X
= =

=∑ ∑ .                        (39) 

Theorem 9.  Let ( , , , )S U AT V f= be an incomplete 

information system and iA AT⊆ ( 1,2,..., )i m=  be 

m attribute subsets. Then for any X⊆U , we have 

 (i) 
1 1

( ) ( );
pm m p

i ii i
A X X A X

= =
⊆ ⊆∑ ∑                    (40)  

(ii)  
1 1

( ) ( ) ,
pm m p

i ii i
A A

= =
∅ = ∅ = ∅∑ ∑                     (41) 

1 1
( ) ( ) ;

pm m p
i ii i

A U A U U
= =

= =∑ ∑                      (42) 

 (iii) 
1 1 1

( ( )) ( ),m m mp p p
i i ii i i

A A X A X
= = =

=∑ ∑ ∑           (43) 

1 1 1
 ( ( )) ( );m m mp p p

i i ii i i
A A X A X

= = =
=∑ ∑ ∑              (44) 

(iv) 
1 1

(~ ) ~ ( ),   m mp o
i ii i

A X A X
= =

=∑ ∑                   (45) 

1 1
(~ ) ~ ( )m mp o

i ii i
A X A X

= =
=∑ ∑ .                     (46) 

 
Table I. An IIS about cars 

Car  P M S X d 
1 high low full low good 
2 low * full low good 
3 * * compact low poor 
4 high * full high good 
5 * * full high excellent 
6 low high full * good 

 
Example 1. An incomplete information system is shown in 

Table I, where Price, Mileage, Size,  Max-Speed are conditional 
attributes, d is a decision attribute. For convenience, we use P, 
M, S, X to represent Price, Mileage, Size,  Max-Speed in short in 
Table 1. Let A=AT={P,M,S,X}. We obtain: 

 C(A)={{1},{2,6},{3}, {4,5},{5,6}}}.CA(1)={{1}},CA(2)= 
{{2, 6}}, CA(3)={{3}}, CA(4)={{4,5}}, CA(5)={{4,5},{5,6}}, 
CA(6) ={{2,6}, {5,6}}. Let X=dgood={1,2,4,6}. We get: 

( ) {1,2,6}oA X = , ( ) {1,2,4,5,6}
o

A X = , ( )pA X =  

{ : ( )( ( ))} {1,2}x U C C A x C C X∈ ∀ ∈ ∈ → ⊆ = , 

( )
p

A X =  { : ( )( ( ))}x U C C A x C C X∈ ∀ ∈ ∈ → ∩ ≠ ∅  {1,=  

2,4,5,6}   

The optimistic approximation precision for X U⊆ in 

( )C A  is | ( ) | / | ( ) |
ooA X A X =3/5=0.5. 

The pessimistic approximation precision for X U⊆ in 

( )C A  is | ( ) | / | ( ) |
ppA X A X =2/5. 

Example 2.  Still use the incomplete information system 
shown in Table I. Let A1= {P,M},A2={S,X},A3={M,X}. Then 
C(A1) ={{1,3, 4,5},{2,3,5,6}},C(A2) ={{1,2,6}, {3},{4,5,6}}, 
C(A3) = {{1,2,3},{2,3,6},{4,5,6}}.     

1
( ) ( )

om o
i ii

A X A X
=

= ∪∑ ={1,2,6}, 
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11
( ) ( )

o om m
i i ii

A X A X==
= ∪∑ ={1,2,3,4,5,6}. 

1
( )

pm
ii

A X
=

=∑  { : ( ( )(ix U i M C C A x C∈ ∀ ∈ ∀ ∈ ∈  ))}C X→ ⊆  

= 1 ( )pm
i iA X=∩ =∅,   

1
( )

p
m

ii
A X

=
=∑ { : ( ( )( ))}ix U i M C C A x C C X∈ ∀ ∈ ∀ ∈ ∈ → ∩ ≠ ∅  

1 ( )
pm

i iA X== ∩ ={1,2,4,5,6}. 

     The optimistic approximation precision for X U⊆ in 
multi-granulation model with respect to ( )C A  is 

1 1
| ( ) | / | ( ) |

oom m
i ii i

A X A X
= =∑ ∑ =3/6.  

The pessimistic approximation precision for X U⊆ in 
multi-granulation model with respect to ( )C A  is 

1 1
| ( ) | / | ( ) |

ppm m
i ii i

A X A X
= =∑ ∑ =0. 

IV. ALGORITHMS FOR APPROXIMATIONS IN 
MULTI-GRANULATION MODEL 

Using maximal compatible class  ( )iC A  in iA ( M =  

{1,2,..., })m , the algorithm is referred in [13] as basic 
granules, we cannot hardly design related algorithms to 
compute lower and upper approximations of a given subset in 
optimistic multi-granulation and pessimistic multi-granulation 
rough set models proposed in the present paper.  

Let { | 1, 2,..., }iU x i n= = . We use sM =  
( )( ) ( 1, 2,..., )s
ij n nm s m× = , where ( )s

ijm equals 1, if 

( , ) ( )i j ix x T A∈ , 0 otherwise, as adjacent  matrix for attribute 

subset Ai and a 2-dimensional binary matrix ( )s
l nP×  , 

where ( ) ( , ) 1sP v j =  means that jx  belongs to the v-th 

maximal compatible class, 0 means not, v=1,2,…,l, to store all 
maximal compatible classes, where ( * ) / 2l n n<= , but l may 
be greater than n in some cases. So we set l be an enough big 
positive integer. Suppose there are totally k  maximal 
compatible classes. After finishing computation, they are stored 
in the first k  rows of ( )

l n

sP
×

, where k l≤ . 

Let (1) ( 2) ( ), ,..., mP P P  , which are obtained according to 
algorithm A  in [13] respectively, be respectively the maximal 
compatible class matrices of 1 2, ,..., mA A A AT⊆ . We can 
firstly design the algorithm to find the optimistic 
multi-granulation lower approximations of X U⊆ . 

Algorithm 1:  Finding the optimistic multi-granulation 
lower approximation of ,X  i.e. 

1
( )

om
ii

A X
=∑ { : ( ( )( ( )))}ix U i M C C A x C C X= ∈ ∃ ∈ ∃ ∈ ∈ ∧ ⊆ . 

Input: ( )iP (i=1,2,…,m): m matrices; Y : a coded 1 n×  
matrix, representing X , [ ] 1Y i = means xi∈X, 0 means not. 

Initialization: [0,0,...,0]T = ,  an 1 n×  matrix; 
Description:  
 for ( int i=0; i<m; i++ ) 

for (j=0; j<k; j++) 
{    int tag=1; 

for ( int u=0; u<n; u++ ) 
                   if (P(i)[j][u]==1&& Y[u]==1)  

continue; 
else { tag=0; break; } 

if (tag==1)    ( )[ ]iT P j T= ∨ ;     
          } 
Output: ,T the lower approximations of .X  
The time complexity of it is ( ).O mnk  
Now we design the algorithm to find the optimistic 

multi-granulation upper approximation of .X U⊆  
Algorithm 2:  Finding the optimistic multi-granulation 

upper approximation of ,X  i.e. 

 
1

( ) { : ( ( )( ( )))}.
om

i ii
A X x U i M C C A x C C X

=
= ∈ ∃ ∈ ∃ ∈ ∈ ∧ ∩ ≠ ∅∑       

Input:  ( )iP (i=1,2,…,m): m matrices; Y: a coded 1 n×  matrix, 
representing X, Y[i]=1 means xi∈X, 0 means not. 

Initialization:  [0,0,...,0]T =  , an 1 n×  matrix; 
Description:   

for ( int i=0; i<m; i++ ) 
for (j=0; j<k; j++) 

{    int tag=0; 
for ( int u=0; u<n; u++ ) 

                       if (P(i)[j][u]==1&& Y[u]==1)  
{  tag=1; 

break ; 
} 

if (tag==1)  ( ) [ ]iT P j T= ∨ ;   
            } 
Output:  ,T the upper approximations of .X  
The time complexity of it is ( ).O mnk  
We then design the algorithm to find the pessimistic 

multi-granulation lower approximation of X U⊆ . 
Algorithm 3: Finding the pessimistic multi-granulation 

lower approximations of ,X   i.e. 
1

( )
pm

ii
A X

=
=∑  

{ : ( ( )(ix U i M C C A x C∈ ∀ ∈ ∀ ∈ ∈  ))}C X→ ⊆ . But 
from the (ii) of the lemma in the above, we can calculate 

1
( )

pm
ii

A X
=∑  by 

1 1
( ) ~ (~ )

opm m
i ii i

A X A X
= =

=∑ ∑ using 

Algorithm 2.  
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Input:  ( )iP (i=1,2,…,m): m matrices; Y: a coded 1 n×  
matrix, representing X, Y[i]=1 means xi∈X, 0 means not. 

Initialization: [0,0,...,0]T = ,  an 1 n×  matrix; 
Description:   
a)  Let Y  be the reverse code of ,Y that is, Y=~Y; 
b) Getting the optimistic multi-granulation upper 

approximation T  of Y  by calling Algorithm 2; 
c) T=~T; 
Output: ,T  the pessimistic multi-granulation lower 

approximation of X .  
The time complexity of it is ( ).O mnk  
Now we finally design the algorithm to find the pessimistic 

multi-granulation upper approximations of X U⊆ . 
Algorithm 4:   Finding the pessimistic multi-granulation 

upper approximation of X , i.e.  
1

( )
p

m
ii

A X
=

=∑  

{ : ( ( )(ix U i M C C A x C∈ ∀ ∈ ∀ ∈ ∈  ))}C X→ ∩ ≠ ∅ . 
But from the (i) of the lemma in the above, we can calculate 

1
( )

p
m

ii
A X

=∑  by 
1

( )
p

m
ii

A X
=∑ =

1
~ (~ )

om
ii

A X
=∑  using 

Algorithm 1. 
Input: iP  (i=1,2,…,m): m matrices; Y: a coded 1 n×  

matrix, representing X, Y[i]=1 means xi∈X, 0, means not. 
Initialization:  [0,0,...,0]T = ,  an 1 n×  matrix; 
Description:   
a)  Let Y  be the reverse of Y , that is, Y=~Y; 
b) Getting the optimistic multi-granulation lower 

approximation T  of Y  by calling Algorithm 1; 
c) T=~T; 
Output: ,T the pessimistic multi-granulation upper 

approximation of .X   
The time complexity of it is ( ).O mnk  

V.  CONCLUSIONS 
Using maximal compatible classes as primitive granules ([9]), 

this paper defines ( )C A  as a knowledge representing system 
and the optimistic and pessimistic lower and upper 
approximations based on ( )C A . It extends single granulation  
rough set model to multi-granulation model. It studies 
properties of the two kinds of approximations in single 
granulation rough set model and multi-granulation model, and 
discusses the relationships of the approximations in both models. 
Using the relationships of optimistic and pessimistic lower and 
upper approximation in multi-granulation model and through 
binary vectors and matrices, it designs algorithms to solve upper 
and lower approximations at some advantages. The correctness 
of the algorithms is verified by experiments through 
programming and execution on computers on several data sets. 
It provides a new forming granule view to solve 
multi-granulation problems in multi-granulation rough set 

model in dealing with incomplete information systems. This 
novel granular approach leads to enriching study methods 
confronting with multi-granulation rough set models. Our next 
work will be the rule generations through the approximations in 
multi-granulation model with maximal compatible classes as 
primitive granules.  
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